Sunday, July 18, 2010

computer graphics applications

Computational biology

Computational biology is an interdisciplinary field that applies the techniques of computer science, applied mathematics and statistics to address biological problems. The main focus lies in the development of computational and statistical data analysis methods and in developing mathematical modeling and computational simulation techniques. By these means it addresses scientific research topics with their theoretical and experimental questions without a laboratory. It is connected to the following fields:

Computational physics

Computational physics is the study and implementation of numerical algorithms to solve problems in physics for which a quantitative theory already exists. It is often regarded as a subdiscipline of theoretical physics but some consider it an intermediate branch between theoretical and experimental physics.

Physicists often have a very precise mathematical theory describing how a system will behave. Unfortunately, it is often the case that solving the theory's equations ab initio in order to produce a useful prediction is not practical. This is especially true with quantum mechanics, where only a handful of simple models have complete analytic solutions. In cases where the systems only have numerical solutions, computational methods are used.

Computer-aided design


Computer-aided design (CAD) is the use of computer technology for the design of objects, real or virtual. CAD often involves more than just shapes. As in the manual drafting of technical and engineering drawings, the output of CAD must convey information, such as materials, processes, dimensions, and tolerances, according to application-specific conventions.

CAD may be used to design curves and figures in two-dimensional (2D) space; or curves, surfaces, and solids in three-dimensional (3D) objects.[1]

CAD is an important industrial art extensively used in many applications, including automotive, shipbuilding, and aerospace industries, industrial and architectural design, prosthetics, and many more. CAD is also widely used to produce computer animation for special effects in movies, advertising and technical manuals. The modern ubiquity and power of computers means that even perfume bottles and shampoo dispensers are designed using techniques unheard of by engineers of the 1960s. Because of its enormous economic importance, CAD has been a major driving force for research in computational geometry, computer graphics (both hardware and software), and discrete differential geometry.[2]

Computer simulation

A computer simulation, a computer model, or a computational model is a computer program, or network of computers, that attempts to simulate an abstract model of a particular system. Computer simulations have become a useful part of mathematical modeling of many natural systems in physics (computational physics), astrophysics, chemistry and biology, human systems in economics, psychology, social science, and engineering. Simulations can be used to explore and gain new insights into new technology, and to estimate the performance of systems too complex for analytical solutions. [1]

Computer simulations vary from computer programs that run a few minutes, to network-based groups of computers running for hours, to ongoing simulations that run for days. The scale of events being simulated by computer simulations has far exceeded anything possible (or perhaps even imaginable) using the traditional paper-and-pencil mathematical modeling: over 10 years ago, a desert-battle simulation, of one force invading another, involved the modeling of 66,239 tanks, trucks and other vehicles on simulated terrain around Kuwait, using multiple supercomputers in the DoD High Performance Computer Modernization Program; [2] a 1-billion-atom model of material deformation (2002); a 2.64-million-atom model of the complex maker of protein in all organisms, a ribosome, in 2005;[3] and the Blue Brain project at EPFL (Switzerland), began in May 2005, to create the first computer simulation of the entire human brain, right down to the molecular level. [4]

Digital art

Digital art is an umbrella term for a range of artistic works and practices that use digital technology. Since the 1970s various names have been used to describe what is now called digital art including computer art and multimedia art but digital art is itself placed under the larger umbrella term new media art.[1][2]

The impact of digital technology has transformed traditional activities such as painting, drawing and sculpture, while new forms, such as net art, digital installation art, and virtual reality, have become recognized artistic practices.[3] More generally the term digital artist is used to describe an artist who makes use of digital technologies in the production of art. In an expanded sense, "digital art" is a term applied to contemporary art that uses the methods of mass production or digital media.[4]

Education

Education in the largest sense is any act or experience that has a formative effect on the mind, character or physical ability of an individual. In its technical sense, education is the process by which society deliberately transmits its accumulated knowledge, skills and values from one generation to another.

Etymologically, the word education is derived from educare (Latin) "bring up", which is related to educere "bring out", "bring forth what is within", "bring out potential" and ducere, "to lead".[1]

Teachers in educational institutions direct the education of students and might draw on many subjects, including reading, writing, mathematics, science and history. This process is sometimes called schooling when referring to the education of teaching only a certain subject, usually as professors at institutions of higher learning. There is also education in fields for those who want specific vocational skills, such as those required to be a pilot. In addition there is an array of education possible at the informal level, such as in museums and libraries, with the Internet and in life experience. Many non-traditional education options are now available and continue to evolve.

A right to education has been created and recognized by some jurisdictions: since 1952, Article 2 of the first Protocol to the European Convention on Human Rights obliges all signatory parties to guarantee the right to education. At world level, the United Nations' International Covenant on Economic, Social and Cultural Rights of 1966 guarantees this right under its Article 13.

Graphic design


Graphic design is a collaborative process between a client and a designer — in conjunction with producers of form (i.e., printers, programmers, signmakers, etc.)— to convey a specific message to a targeted audience. The term "graphic design" can also refer to a number of artistic and professional disciplines that focus on visual communication and presentation. The field is also often referred to as Visual Communication or Communication Design. Various methods are used to create and combine words, symbols, and images to create a visual representation of ideas and messages. A graphic designer may use typography, visual arts and page layout techniques to produce the final result. Graphic design often refers to both the process (designing) by which the communication is created and the products (designs) which are generated.

Common uses of graphic design include identity (logos and branding), web sites, publications (magazines, newspapers, and books), advertisements and product packaging. For example, a product package might include a logo or other artwork, organized text and pure design elements such as shapes and color which unify the piece. Composition is one of the most important features of graphic design, especially when using pre-existing materials or diverse elements.

Information graphics

Information graphics or infographics are graphic visual representations of information, data or knowledge. These graphics present complex information quickly and clearly[1], such as in signs, maps, journalism, technical writing, and education. With an information graphic, computer scientists, mathematicians, and statisticians develop and communicate concepts using a single symbol to process information.

Information visualization

Information visualization is the interdisciplinary study of "the visual representation of large-scale collections of non-numerical information, such as files and lines of code in software systems, library and bibliographic databases, networks of relations on the internet, and so forth".[1]

Drug design


Drug design, also sometimes referred to as rational drug design, is the inventive process of finding new medications based on the knowledge of the biological target.[1] The drug is most commonly an organic small molecule which activates or inhibits the function of a biomolecule such as a protein which in turn results in a therapeutic benefit to the patient. In the most basic sense, drug design involves design of small molecules that are complementary in shape and charge to the biomolecular target to which they interact and therefore will bind to it. Drug design frequently but not necessarily relies on computer modeling techniques.[2] This type of modeling is often referred to as computer-aided drug design.

The phrase '"drug design" is to some extent a misnomer. What is really meant by drug design is ligand design. Modeling techniques for prediction of binding affinity are reasonably successful. However there are many other properties such as bioavailability, metabolic half life, lack of side effects, etc. that first must be optimized before a ligand can become a safe and efficacious drug. These other characteristics are often difficult to optimize using rational drug design techniques.

Scientific visualization

Scientific visualization (also spelled scientific visualisation) is an interdisciplinary branch of science according to Friendly (2008) "primarily concerned with the visualization of three dimensional phenomena (architectural, meteorological, medical, biological, etc.), where the emphasis is on realistic renderings of volumes, surfaces, illumination sources, and so forth, perhaps with a dynamic (time) component".[2]

Video game


A video game is an electronic game that involves interaction with a user interface to generate visual feedback on a video device. The word video in video game traditionally referred to a raster display device.[1] However, with the popular use of the term "video game", it now implies any type of display device. The electronic systems used to play video games are known as platforms; examples of these are personal computers and video game consoles. These platforms range from large mainframe computers to small handheld devices. Specialized video games such as arcade games, while previously common, have gradually declined in use.

The input device used to manipulate video games is called a game controller, and varies across platforms. For example, a dedicated console controller might consist of only a button and a joystick. Another may feature a dozen buttons and one or more joysticks. Early personal computer games often needed a keyboard for gameplay, or more commonly, required the user to buy a separate joystick with at least one button.[2] Many modern computer games allow, or even require, the player to use a keyboard and mouse simultaneously.

Video games typically also use other ways of providing interaction and information to the player. Audio is almost universal, using sound reproduction devices, such as speakers and headphones. Other feedback may come via haptic peripherals, such as vibration or force feedback, with vibration sometimes used to simulate force feedback.

Virtual reality


Virtual reality (VR) is a term that applies to computer-simulated environments that can simulate places in the real world as well as in imaginary worlds. Most current virtual reality environments are primarily visual experiences, displayed either on a computer screen or through special stereoscopic displays, but some simulations include additional sensory information, such as sound through speakers or headphones. Some advanced, haptic systems now include tactile information, generally known as force feedback, in medical and gaming applications.

Users can interact with a virtual environment or a virtual artifact (VA) either through the use of standard input devices such as a keyboard and mouse, or through multimodal devices such as a wired glove, the Polhemus boom arm, and omnidirectional treadmills. The simulated environment can be similar to the real world, for example, in simulations for pilot or combat training, or it can differ significantly from reality, as in VR games. In practice, it is currently very difficult to create a high-fidelity virtual reality experience, due largely to technical limitations on processing power, image resolution and communication bandwidth. However, the technology's proponents hope that such limitations will be overcome as processor, imaging and data communication technologies become more powerful and cost-effectiveness over time.

Virtual reality is often used to describe a wide variety of applications commonly associated with immersive, highly visual, 3D environments: the development of CAD software, graphics hardware acceleration, head mounted displays, database gloves and miniaturization have helped popularize the notion. In the book The Metaphysics of Virtual Reality, Michael R. Heim identifies seven different concepts of Virtual Reality: simulation, interaction, artificiality, immersion, telepresence, full-body immersion, and network communication. The definition still has a certain futuristic romanticism attached. People often identify VR with Head Mounted Displays and Data Suits.

Web design


Web design is the skill of creating presentations of content (usually hypertext or hypermedia) that is delivered to an end-user through the World Wide Web, by way of a Web browser or other Web-enabled software like Internet television clients, microblogging clients and RSS readers.

The intent of Web design is to create a website—a collection of electronic documents and applications that reside on a Web server/servers and present content and interactive features/interfaces to the end user in form of Web pages once requested.[citation needed] Such elements as text, bit-mapped images (GIFs, JPEGs) and forms can be placed on the page using HTML/XHTML/XML tags. Displaying more complex media (vector graphics, animations, videos, sounds) requires plug-ins such as Adobe Flash, QuickTime, Java run-time environment, etc. Plug-ins are also embedded into web page by using HTML/XHTML tags.

Improvements in browsers' compliance with W3C standards prompted a widespread acceptance and usage of XHTML/XML in conjunction with Cascading Style Sheets (CSS) to position and manipulate web page elements and objects. Latest standards and proposals aim at leading to browsers' ability to deliver a wide variety of content and accessibility options to the client possibly without employing plug-ins.

Typically Web pages are classified as static or dynamic:

  • Static pages don’t change content and layout with every request unless a human (web master/programmer) manually updates the page. A simple HTML page is an example of static content.
  • Dynamic pages adapt their content and/or appearance depending on end-user’s input/interaction or changes in the computing environment (user, time, database modifications, etc.) Content can be changed on the client side (end-user's computer) by using client-side scripting languages (JavaScript, JScript, Actionscript, etc.) to alter DOM elements (DHTML). Dynamic content is often compiled on the server utilizing server-side scripting languages (Perl, PHP, ASP, JSP, ColdFusion, etc.). Both approaches are usually used in complex applications.

With growing specialization in the information technology field there is a strong tendency to draw a clear line between web design and Web development.

Web design is a kind of graphic design intended for development and styling of objects of the Internet's information environment to provide them with high-end consumer features and aesthetic qualities. The offered definition separates Web design from web programming, emphasizing the functional features of a web site, as well as positioning web design as a kind of graphic design.[1]

The process of designing web pages, web sites, web applications or multimedia for the Web may utilize multiple disciplines, such as animation, authoring, communication design, corporate identity, graphic design, human-computer interaction, information architecture, interaction design, marketing, photography, search engine optimization and typography.

Web pages and websites can be static pages, or can be programmed to be dynamic pages that automatically adapt content or visual appearance depending on a variety of factors, such as input from the end-user, input from the Webmaster or changes in the computing environment (such as the site's associated database having been modified).

With growing specialization within communication design and information technology fields, there is a strong tendency to draw a clear line between Web design specifically for web pages and Web development for the overall logistics of all web-based services.

1 comment:

  1. Interesting Article. Hoping that you will continue posting an article having a useful information. Deep Drawn Can

    ReplyDelete